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D-GLYCOPYRANOSYL PHENYLSULFONES: THEIR USE IN A STEREOCONTROLLED
SYNTHESIS OF CIS-2,6-DISUBSTITUTED- TETRAHYDROPYRANS (B—D-C--GLYCOSIDES)l
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Summary: The lithiated anion derived from 3,4,6-tri-O-t-butyldimethylsilyl-2-deoxy-0, B-D-gluco-
pyranosyl phenylsulfones 1 reacts with various electrophiles leading to alkylated products, precur-
sors of B-D-C-glycosides 5a-g after stereocontrolled desulfonylation and hydrolysis.

In the preceding communication we demonstrated that i) crystalline 2-deoxy-D-glucopyranosyl
phenylsulfones are easily prepared from corresponding glucals, ii) their @-phenylsulfony! lithiated
anions are readily obtained, iii) phenylsulfones undergo a stereoselective reductive desulfonylation
by treatment with lithium naphthalenide leading to configurationally stable glycosyl anionsz.
As a consequence of these findings, a combination of anomeric sulfones deprotonation-electro-
philic trapping-reductive desulfonylation and proton quenching should provide a novel stereoselec-
tive preparation of cis-2,6-disubstituted tetrahydropyrans (8-D-C-hexopyranosides) as depicted

in the following scheme (scheme 1).
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Scheme 1

The lithiated anion of 3,4,6-tri-O-t-butyldimethylsilyl-2-deoxy-o, B-D-glucopyranosyl phenyl-
sulfone53 (LDA, 1.2 equiv., THF, hexanes, -78 °C, 5 min) reacted with benzaldehyde (I equiv.,
10 min)u. In situ reductive desuifonylation, (lithium naphthalenide, 2.5 equiv., 10 min) of the
alkylated sulfones and hydrolysis of the anomeric anionic species thus produced gave the equator-
ial D-C-glycosides 5d”°%7

one-pot sequence of transformations with other representative aldehydes (entries c-g) and methyl

(Table, entry d, 74% overall yield). As indicated in the Table, this

iodide (entry b) gave similar results. When secondary alcohols were produced (5d-g), the isomeric
mixtures were oxidized (PCC AcONa, molecular sieve #A CH Cl , room temperature, 0.5 to
1 h) to single ketones: 6d° (92%), [aly -5°% 6e® (91%), ]y +22° s_f (93%), ]y +18% _g (87%),
[(x]D +6°.  Primary alcohol 5_c6 was further transformed [1) PCC, DMF, room temperature, 20 h;

i) CH NZ’ MeOH-ethyl ether; iii) TBDMSCI, imidazole, DMF, room temperature, 8h] to methyl
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6 : .
ester 6¢ - As was the case with anomeric sulfonesz, reductive desulfonylation of these tertiary
a-phenyl sulfonyl cyclic ethers occurs with a high degree of stereoselectivity although some

stereoleakage (B: aratio, 40) is observed in the case of 5c.
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a) Not optimized yields obtained after purification of the products;
b) HMPA was added to the alkylation mixture; c¢) See note 8;
d) The major isomer was further characterized by its hepta-O-acetate

derivative.

Table

Diastereofacial selectivity in the addition of a-sulfonyl anion to n-hexanal (l:1), benzaldehyde
(3:1) and methyl 6-aldehydo-2,3,4-tri-O-benzyl-o-D-glucopyranoside (entry g, 3:1) was low. Inter-
estingly, the newly-formed exocyclic asymmetric centre in reaction with 1,2-O-isopropylidene-D-
glyceraldehyde (entry f) was mostly s8 (isomer ratio 9:1). The addition of lithium reagents
to this aldehyde is well documented9 and occurs generally with low selectivity. Facial discrimin-

ation in this instance most likely results from the asymmetric nature of the lithiated sulfonelo
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In conclusion, kinetic anomeric anions 4 where E:H,DZ, alkyl or CH(OLR are configuration-
ally stable at -78 °C (THF, hexanes) thus leading selectively to equatorial D-C-glycosides after
hydrolysis. A simple protonation ends the synthetic combination described here. Use of a second
alkylation step is feasible and would constitute a stereoselective bis-alkylation of anomeric

Centres of monosaccharides; a study of this possibility is now in progress11

Typical procedure: To a stirred solution of phenylsulfones 1 (0.52 mmol) in anhydrous THF (5ml)

under argon at -78 °C was added LDA (0.5M in hexanes, 1.1 mi, 1.05 equiv.) and 1,2-O-isopropyl-
idene-D-glyceraldehyde (0.52 mmol) after 5 min. After an additional 10 min the reaction mixture
was then successively treated with freshly prepared lithium naphthalenide (1M in THF, 1.3 mmol;
2.5 equiv., 15 min) and MeOH (2.6 mmol; 5 equiv., 15 min). The crude residue obtained after
the usual workup was purified by column chromatography on silica gel (hexanes: diethyl ether,
30:1 then 10:1, 0.1% EtBN) to provide alcohol 5f (0.32 mmol, 62%, [OL]D—1°) and its diastereoisomer
(0.035 mmol, 6.7%, [Ot]D +4°).
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6g: S 1.50 (IH, m, JZ'ax,B‘ 11.0, Jl'Z'ax 11.9, JZ'ax 2'eq 13.1 Hz, H-2'ax); 2.14 (1H, ddd,
Ed 2
1l .
Jl',2'eq 2.2, J2’eq,3 4.9, JZ‘ax,Z'eq 13.1 Hz, H-2'eq); 3.91 (IH, dd, Jl’,Z'eq 2.2, Jl',Z‘ax
11.9 Hz, H-1".
7. In this case, the hemiketal i (12%) was also isolated. Compound i was the major structure
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HOOH
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scheme.
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